La NASA scopre che alcuni asteroidi avanzano in anticipo causati dal sole – “Siamo rimasti sorpresi”

di

Questo mosaico dell’asteroide Bennu è stato creato utilizzando le osservazioni della navicella spaziale OSIRIS-REx della NASA, che è stata nelle immediate vicinanze dell’asteroide per più di due anni. Credito: NASA/Goddard/Università dell’Arizona

Recentemente, studiosi di La missione OSIRIS-REx della NASA Ha scoperto che il rinnovamento della superficie avviene sugli asteroidi molto più rapidamente che sulla Terra. Analizzando le immagini ad alta risoluzione delle fratture rocciose sull’asteroide Bennu, scattate da[{” attribute=””>OSIRIS-REx spacecraft, the researchers discovered that the Sun’s heat fractures rocks on Bennu in only 10,000 to 100,000 years. With the use of this knowledge, scientists will be able to better predict the time it takes boulders on asteroids like Bennu to fragment into smaller pieces, some of which may eject into space while others may remain on the asteroid’s surface.

Although tens of thousands of years might sound pretty slow, “we thought surface regeneration on asteroids took a few millions of years,” said Marco Delbo, senior scientist at Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, Laboratoire Lagrange, Nice, France, and lead author of a paper published in June 2022 in the journal Nature Geoscience. “We were surprised to learn that the aging and weathering process on asteroids happens so quickly, geologically speaking.”

Although landslides, volcanoes, and earthquakes may abruptly alter the Earth’s surface, most changes occur gradually. Over millions of years, water, wind, and temperature changes slowly erode rock to create new surfaces. For instance, if you hiked into the Grand Canyon, you would see distinct rock layers; the top layers tend to be the youngest rocks, dating around 270 million years old, and the layers at the bottom of the canyon are the oldest, about 1.8 billion years old. The Colorado River has been chiseling away at rocks in the Grand Canyon for 5 million to 6 million years, according to the U.S. National Park Service.

Bennu Surface PolyCam

The PolyCam aboard NASA’s OSIRIS-REx spacecraft provided high-resolution, microscope-like images of asteroid Bennu’s surface. This made it possible for researchers to map more than 1,500 rock fractures. Credit: NASA/Goddard/University of Arizona

Rapid temperature changes on asteroid Bennu create internal stress that fractures and breaks down rocks, comparable to how a cold glass breaks under hot water. On Bennu, the Sun rises every 4.3 hours. At the equator, daytime highs can reach almost 260°F (about 127°C), and nighttime lows plummet to nearly minus 10°F (about minus 23°C).

OSIRIS-REx scientists spotted cracks in the rocks in spacecraft images from the first surveys of the asteroid. All of the fractures seemed to point in the same direction, “a distinct signature that temperature shocks between the day and the night could be the cause,” said Delbo.

Bennu Surface PolyCam Fractures Highlighted

Same image as above, but with the fractures highlighted in red. Credit: NASA/Goddard/University of Arizona

Delbo and his colleagues measured the length and angles of more than 1,500 fractures in OSIRIS-REx images by hand: some shorter than a tennis racket, others longer than a tennis court. They found the fractures predominantly align in the northwest-southeast direction, indicating they were caused by the Sun, which is shown here to be the primary force changing Bennu’s landscape.

“We were surprised to learn that the aging and weathering process on asteroids happens so quickly, geologically speaking.” — Marco Delbo

“If landslides or impacts were moving boulders faster than the boulders were cracking, the fractures would point in random directions,” said Delbo.

The research team used a computer model and their fracture measurements to calculate the 10,000- to 100,000-year timeframe for thermal fractures to propagate and split rocks.

“The thermal fractures on Bennu are quite similar to what we find on Earth and on Mars in terms of how they form,” said Christophe Matonti, a co-author of the paper at Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, Géoazur, Sophia-Antipolis, Valbonne, France. “It is fascinating to see that they can exist and are similar in very ‘exotic’ physical conditions [low gravity, no atmosphere]Anche rispetto a Marte.

Jason Dworkin, scienziato del progetto OSIRIS-REx presso Goddard Space Flight Center della NASA a cintura verde, nel Maryland.

OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Restituirà un campione di Bennu sulla Terra Il 24 settembre 2023. “Saremo in grado di apprendere maggiori dettagli sull’età della superficie quando saremo in grado di studiare direttamente il campione”, ha affermato Dworkin.

Riferimento: “Allineamento delle fratture sulle rocce di Bennu indicative della rapida evoluzione della superficie dell’asteroide” di Marco Delpo, Kevin J Walsh, Christoph Mattonti, Justin Wilkerson, Maurizio Pagola, Manar the Lion, Chrisa Avdelido, Ronald Lewis Blues, Karina A. Bennett, Harold C. Connolly Jr e Daniela Dellagiostina, Dathon R. Gulish, Jimmy L. Molaro, Bashar Rizk e Stephen R. scienze naturali della terra.
DOI: 10.1038 / s41561-022-00940-3

READ  I fisici scoprono un nuovo modo per risolvere lo strano mistero dell'energia oscura

We will be happy to hear your thoughts

Leave a reply